A High Speed Detection Platform Based on Surface-Enhanced Raman Scattering for Monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall
نویسندگان
چکیده
Rapid and accurate diagnosis for pathogens and their antibiotic susceptibility is critical for controlling bacterial infections. Conventional methods for determining bacterium's sensitivity to antibiotic depend mostly on measuring the change of microbial proliferation in response to the drug. Such "biological assay" inevitably takes time, ranging from days for fast-growing bacteria to weeks for slow-growers. Here, a novel tool has been developed to detect the "chemical features" of bacterial cell wall that enables rapid identification of drug resistant bacteria within hours. The surface-enhanced Raman scattering (SERS) technique based on our newly developed SERS-active substrate was applied to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., approximately 1 hr) of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single-bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria.
منابع مشابه
Detection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملLow-cost Paper-based Assays for Multiplexed Genetic Analysis Using Surface Enhanced Raman Spectroscopy
Title of dissertation: LOW-COST PAPER-BASED ASSAYS FOR MULTIPLEXED GENETIC ANALYSIS USING SURFACE ENHANCED RAMAN SPECTROSCOPY Eric Peter Hoppmann, Doctor of Philosophy, 2013 Dissertation directed by: Professor Ian White Department of Bioengineering In order to improve human health it is critical to develop low-cost sensors for chemical detection and healthcare applications. Low-cost chemical de...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملCoating Of Silver Nanoparticles by Sputtering Method on Glass Substrates as Surface-Enhanced Raman Spectroscopy (SERS) Biosensor for Detection of Whey Protein
This article has no abstract.
متن کاملSurface-enhanced Raman scattering assay combined with autonomous DNA machine for detection of specific DNA and cancer cells.
An ultrasensitive surface-enhanced Raman scattering (SERS) detection system based on DNA machine isothermal amplification is reported to detect a specific DNA sequence for the first time and was successfully applied to detect cancer cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009